

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 2417-2419

Tetrahedron Letters

Metalation of α -diazocarbonyl compounds using Grignard reagents. A convenient synthesis of α -diazo- β -ketoesters and mixed esters of α -diazomalonate

Erick Cuevas-Yañez,^{a,*} Joseph M. Muchowski^b and Raymundo Cruz-Almanza^{a,‡}

^aInstituto de Química, UNAM. Organic synthesis, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México DF, Mexico ^bChemistry, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304-1320, USA

Received 7 November 2003; revised 15 January 2004; accepted 16 January 2004

Abstract— α -Diazocarbonyl compounds react with methylmagnesium bromide at -78 °C generating the corresponding α -diazo- α -bromomagnesio species, which can be intercepted by various electrophilic reagents. For example, with alkyl chloroformates α -diazo- β -ketoesters or mixed esters of α -diazomalonate are obtained in good yields. © 2004 Elsevier Ltd. All rights reserved.

 α -Diazo- β -ketoesters are of considerable importance as precursors of carbonyl ylides,¹ and recently have also been used to prepare furo[3,4-*c*]furan derivatives.²

In connection with a current synthetic study, we required an array of α -diazo- β -ketoesters in which the acyl portion of the molecule was widely varied. The diazo transfer reaction to β -ketoesters,³ which is one of the most frequently used syntheses of these compounds, was inappropriate for our purposes because the required β-ketoesters were not readily accessible. The direct acylation of diazoacetic esters although attractive, is limited in scope to reactive acyl halides⁴ and anhydrides (e.g., trifluoroacetic anhydride).⁵ It is known that α diazoacetic acid esters react with aldehydes and imines in the presence of $NaOH^6$ or $DBU.^7$ In addition, $\alpha\text{-}$ metalated diazo compounds based on lithium,8 silver,9 mercury,¹⁰ or zinc¹¹ are easily generated and react with various electrophilic reagents. We attempted to adapt several of these methods to the synthesis of α -diazo- β ketoesters from α-diazoketones and alkyl chloroformates, but they either failed completely, or were of limited generality. We were attracted by the report of Schöllkopf et al.¹² concerning the deprotonation of ethyl diazoacetate with methylmagnesium iodide and the subsequent generation of ethyl α -diazopropionate upon reaction of the α -iodomagnesio species with methyl iodide. This report describes the successful adaptation of this methodology to the synthesis of α -diazo- β -ketoesters from α -diazoketones and alkyl chloroformates.

In a model study, an equimolar amount of methylmagnesium bromide in THF was added to a THF solution of ethyl diazoacetate at -78 °C (inert atmosphere). After 30 min at -78 °C an equimolar amount of ethyl chloroformate was added and after an additional 30 min at -78 °C, the reaction was quenched with aqueous NH₄Cl. Column chromatographic purification on silica gel gave diethyl diazomalonate in 81% yield. Not only was this process readily applicable to the synthesis of mixed esters of α -diazomalonate (Table 1, entries 9–11), it could also be used to prepare α -diazo- β -ketoesters from α -diazoketones (entries 1–7).¹³ Further-more, electrophilic reagents such as di-*tert*butyldicarbonate, MEM chloride, *p*-toluenesulfonyl chloride, and piperonal produced the new α -diazo- β substituted carbonyl compounds shown in entries 11–14.

This synthesis of functionalized α -diazocarbonyl compounds has one important limitation. Substrates with acidic hydrogens α to the carbonyl moiety are deprotonated at this site and the carbanionic species so produced cyclizes. For example, the diazoketone 1¹⁸ is converted into the enolate 2, which on acidification gives

Keywords: Diazoketone; Grignard reagent; Diazoketoester; Diazomalonate.

^{*} Corresponding author. Tel.: +52-56-224408; fax: +52-56-162217; e-mail: erick.cuevas@correo.unam.mx

[★] Deceased, October 2003.

^{0040-4039/\$ -} see front matter $\odot 2004$ Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.01.074

Г

٦

			$R \xrightarrow[N_2]{O} H CH_3MgBr - $	THF -78 °C		JBr	$\xrightarrow{EX} \qquad R \xrightarrow{O} \underset{N_2}{\overset{O}{\longleftarrow}} E$		
Entry	R	Electrophile	Diazocompound	Yield (%)	Entry	R	Electrophile	Diazocompound	Yield (%)
114	Ph	ClCOOEt	Ph N ₂ OEt	79	815	EtO	ClCOOEt		81
2	Ph	ClCOOi-Bu	Ph OiBu N ₂	98	9 ^{4d}	EtO	ClCOOBn	Eto N2	82
3	Ph	(BOC) ₂ O	Ph N ₂ OtBu	68	10	EtO	ClCOO <i>i</i> -Bu		73
4	PhCH ₂ CH ₂	ClCOOEt	Ph N_2 O	58	11 ¹⁶	EtO	(BOC) ₂ O	Eto N ₂ OtBu	63
5	PhCH ₂ CH ₂	ClCOOBn	Ph N ₂ OBn	45	12	EtO	CIMEM		44
6	PhCH ₂ CH ₂	ClCOO <i>i</i> -Bu	Ph O Bu	42	13 ¹⁷	EtO	ClSO ₂ C ₆ H ₄ CH ₃	$EtO \overset{O}{\underset{N_2}{\coprod}} SO_2C_6H_4CH_3$	88
7	PhCH ₂ CH ₂	(BOC) ₂ O	Ph O D N ₂ OtBu	42	14	Ph	OHC		97

Table 1. Diazocompounds prepared from α -diazocarbonyl compounds, methylmagnesiumbromide and diverse electrophiles

the very unstable, but spectroscopically characterizable pyrazolinone **3**.¹⁹ If the enolate solution is left at room temperature (12 h), acidification gives crystalline 3-phe-nyl-4-hydroxypyrazole 4^{20} (75% yield). This route to 4-hydroxypyrazoles has ample literature precedent (Scheme 1).²¹

In summary, α -diazo- β -keto esters, mixed esters of α -diazomalonates, and other β -substituted α -diazocarbonyl compounds are easily prepared from α -diazo- α -bromomagnesio carbonyl compounds and the appropriate electrophilic reagent. The simplicity of the method suggests that this route to β -functionalized α -diazocarbonyl compounds will enjoy widespread application.

Scheme 1. Generation of pyrazolinone 3 and hydroxypyrazole 4 from 1.

Acknowledgements

Financial support from CONACyT (No. 37312-E) is gratefully acnowledged. The authors would also like to thank R. Patiño, M. Adaya, A. Peña, N. Zavala, E. Huerta, J. Pérez, and L. Velasco for the technical support.

References and notes

- 1. Hodgson, D. M.; Glen, R.; Grant, G. H.; Redgrave, A. J. Org. Chem. 2003, 68, 581, and references cited therein.
- 2. Padwa, A.; Straub, C. S. J. Org. Chem. 2003, 68, 227.
- Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Synthetic Methods Using Diazocompounds: From Cyclopropanes to Ylides; John Wiley and Sons: New York, 1998.
- (a) Bestmann, H. J.; Kolm, H. Chem. Ber. 1963, 96, 1948;
 (b) Staudinger, H.; Becker, J.; Hirzel, H. Chem. Ber. 1916, 49, 1978;
 (c) Looker, J. H.; Thatcher, D. N. J. Org. Chem. 1958, 23, 403;
 (d) Marino, J. P.; Osterhout, M. H.; Price, A. T.; Sheehan, S. M.; Padwa, A. Tetrahedron Lett. 1994, 35, 849.
- 5. Weygand, F.; Schwenke, W.; Bestmann, H. J. Angew. Chem. 1958, 70, 506.
- Wenkert, E.; McPherson, A. J. Am. Chem. Soc. 1972, 94, 8084.

- 7. Jiang, N.; Wang, J. Tetrahedron Lett. 2002, 43, 1285.
- (a) Jiang, N.; Qu, Z.; Wang, J. Org. Lett. 2001, 3, 2989; (b) Ye, T.; McKervey, M. A. Tetrahedron 1992, 48, 8007; (c) Moody, C. J.; Taylor, R. J. Tetrahedron 1990, 46, 6525; (d) Schollkopf, U.; Frasnelli, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 301; (e) Aggarwal, V. K.; Sheldon, C. G.; Macdonald, G. J.; Martin, W. P. J. Am. Chem. Soc. 2002, 124, 10300.
- (a) Regitz, M.; Liedhegener, A.; Eckstein, U.; Martin, M.; Anschutz, W. *Leibigs Ann. Chem.* **1971**, *748*, 207; (b) Schollkopf, U.; Rieber, N. *Chem. Ber.* **1969**, *102*, 488.
- (a) Demaree, P.; Doria, M. C.; Muchowski, J. M. J. Heterocycl. Chem. 1978, 15, 1295; (b) Demaree, P.; Doria, M. C.; Muchowski, J. M. Can. J. Chem. 1977, 55, 243.
- (a) Sarabia, F.; Lopez-Herrera, F. J. *Tetrahedron Lett.* **2001**, *42*, 8801; (b) Moody, C. J.; Morfitt, C. N. *Synthesis* **1998**, 1039.
- Schollkopf, U.; Banhidai, B.; Frasnelli, H.; Meyer, R.; Beckhaus, H. Liebigs Ann. Chem. 1974, 1767.
- 13. Typical procedure for the synthesis of α -diazo- β -ketoesters. 3.0 M Ethereal MeMgBr (0.33 mL, 1 mmol) was added to a stirred solution of the diazoketone (1 mmol) in dry THF cooled to $-78 \,^{\circ}$ C (N₂ atmosphere). The requisite electrophilic reagent was then added neat at -78 °C and thereafter stirring was continued at this temperature for an additional 30 min. Saturated aqueous NH₄Cl (15 mL) was then added to the reaction mixture and the product was extracted with ether $(3 \times 10 \text{ mL})$. The extract was dried over Na₂SO₄, the solvent was removed in vacuo and the product was purified by column chromatography (SiO₂, hexane/AcOEt 9:1). Selected spectral data. Entry 2: IR (CHCl₃, cm⁻¹) 2962, 2091, 1713; ¹H NMR (CDCl₃, 200 MHz) & 0.96 (d, 6H), 1.91 (m, 1H), 3.85 (d, 2H), 7.09-7.70 (m, 5H); ¹³C NMR (CDCl₃, 50 MHz) δ 19.3, 19.3, 27.0, 72.2, 74.6, 126.8, 126.8, 127.8, 127.8, 135.5, 136.1, 169.4, 183.2; MS [EI+] *m/z* (RI%): 246 [M]⁺ (5), 105 [Ph-CO]⁺ (100). Entry 3: IR (CHCl₃, cm⁻¹) 2984, 2110, 1720; ¹H NMR (CDCl₃, 200 MHz) δ 1.52 (s, 9H), 7.09– 7.70 (m, 5H); ¹³C NMR (CDCl₃, 50 MHz) δ 29.1, 29.1, 29.1, 72.9, 75.3, 126.4, 126.4, 127.7, 127.7, 135.2, 136.0, 170.1, 183.1 MS [EI+] m/z (RI%): 246 [M]⁺ (10), 105 [Ph-CO]⁺ (100). Entry 4: IR (CHCl₃, cm⁻¹) 2982, 2089, 1762, 1709; ¹H NMR (CDCl₃, 200 MHz) δ 1.33 (t, 3H), 3.77 (t, 2H), 3.61 (t, 2H), 4.29 (q, 2H), 6.97-7.33 (m, 5H); ¹³C NMR (CDCl₃, 50 MHz) δ 14.3, 31.1, 41.5, 63.0, 74.9, 126.5, 126.5, 127.7, 127.7, 135.3, 136.4, 177.8, 212.5; MS [EI+] m/z (RI%): 246 [M]⁺ (2), 91 [PhCH₂, $M-CH_2COCN_2CO_2Et]^+$ (100). Entry 5: IR (CHCl₃, cm⁻¹) 3029, 2092, 1716; ¹H NMR (CDCl₃, 200 MHz) δ 2.99 (t, 2H), 3.39 (t, 2H), 5.11 (s, 2H), 6.97–7.33 (m, 10H); ¹³C NMR (CDCl₃, 50 MHz) δ 31.1, 41.5, 67.1, 75.4, 126.1, 128.4, 128.4, 128.5, 130.4, 130.4, 131.3, 131.3, 135.2, 138.1, 177.1, 213.3; MS [EI+] m/z (RI%): 308 [M]⁺ (5), 91 [PhCH₂]⁺ (100). Entry 6: IR (CHCl₃, cm⁻¹) 2963, 2117, 1770; ¹H NMR (CDCl₃, 200 MHz) δ 0.96 (d, 6H), 1.91 (m, 1H), 3.85 (d, 2H), 3.01 (t, 2H), 3.38 (t, 2H), 6.97–7.33 (m, 5 H); ¹³C NMR (CDCl₃, 50 MHz) δ 19.0, 19.0, 27.0, 31.1, 41.2, 72.2, 74.6, 126.1, 128.4, 128., 130.4, 130.4, 139.0, 177.1, 213.3; MS [EI+] *m*/*z* (RI%): 274 [M]⁺ (10). Entry 7: IR (CHCl₃, cm⁻¹) 2951, 2103, 1739; ¹H NMR (CDCl₃, 200 MHz) δ 1.51 (s, 9H), 3.66 (d, 2H), 2.95 (t, 2H), 6.97-7.33 (m, 5 H); ¹³C NMR (CDCl₃, 50 MHz) δ 29.1, 29.1,

29.1, 31.3, 42.0, 72.9, 75.3, 126.1, 128.4, 128.4, 130.4, 130.4, 139.0, 177.2, 213.3; MS [EI+] *m/z* (RI%): 274 [M]⁺ (8), 91 [PhCH₂]⁺ (100). Entry 10: IR (CHCl₃, cm⁻¹) 2964, 2141, 1713; ¹H NMR (CDCl₃, 200 MHz) δ 0.94 (d, 6H),1.28 (t, 3H), 3.85 (d, 2H), 4.24 (q, 2H); ¹³C NMR (CDCl₃, 50 MHz) & 14.3, 19.0, 19.0, 27.0, 72.2, 73.7, 74.6, 177.1, 177.9; MS [EI+] m/z (RI%): 214 [M]⁺ (5), 0.73 $[CO_2CH_2CH_3]^+$ (100). Entry 12: IR (CHCl₃, cm⁻¹) 2975, 2141, 1713; ¹H NMR (CDCl₃, 200 MHz) δ 1.33 (t, 3H), 3.40 (s, 3H); 3.57 (t, 2H), 3.72 (t, 2H), 4.24 (q, 2H); 4.76 (s, 2H); ¹³C NMR (CDCl₃, 50 MHz) δ 14.3, 58.5, 58.7, 68.2, 70.5, 72.8,171.4; MS [EI+] m/z (RI%): 202 [M]⁺ (5), 0.29 [CH₂CH₃]⁺ (100). Entry 14: p.f. 62 °C; IR (CHCl₃, cm⁻¹) 3360, 2909, 2090, 1686; ¹H NMR (CDCl₃, 200 MHz) δ 6.06 (s, 2H), 6.74 (s, 1H), 6.94 (d, 1H), 6.97–7.63 (m, 7H); ${}^{13}C$ NMR (CDCl₃, 50 MHz) δ 65.2, 69.7, 123.8, 123.8, 125.7, 125.7, 126.8, 126.8, 127.8, 127.8, 133.2, 135.4, 136.1, 139.7, 189.7; MS [EI+] *m/z* (RI%): 296 [M]⁺ (5), 268 [M–N₂]⁺ (5), 251 [M–N₂–OH]⁺ (5), 151 $[M-CN_2COC_6H_5]^+$ (100).

- 14. Zeller, K. P.; Meier, H.; Muller, E. Liebigs Ann. Chem. 1971, 749, 178.
- Rosenberg, M.; Yates, P.; Hendrickson, J. B.; Wolf, W. Tetrahedron Lett. 1964, 2285.
- 16. Koskinen, A. M. P.; Muñoz, L. J. Chem. Soc., Chem. Commun. 1990, 652.
- 17. Regitz, M.; Bartz, W. Chem. Ber. 1970, 103, 1477.
- 18. McKervey, M. A.; Ratananukul, P. *Tetrahedron Lett.* **1982**, *23*, 2509.
- Preparation of compound 3. A THF solution of the bromomagnesio derivative of the α-diazoketone 1 (1 mmol) was prepared as described above, and after 30 min at -78 °C saturated aqueous NH₄Cl (15 mL) was added to the reaction mixture. The product was extracted with ether (3×10 mL), the extract was dried over Na₂SO₄, and the solvent was removed in vacuo to give compound 3 as a very unstable, red oil (62%). Selected spectral data for compound 3: ¹H NMR (CDCl₃, 300 MHz) δ 5.13 (s, 2H), 6.19 (s, 1H), 7.19–7.36 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ 55.0, 68.0, 127.1, 128.7, 128.7, 129.2, 129.2, 134.3, 197.8; MS [EI+] m/z (RI%): 160 [M]⁺ (25), 77 [C₆H₅]⁺ (100); IR (film, cm⁻¹) 2108, 1732.
- 20. Preparation of compound 4. A solution of the bromomagnesio derivative of 1 (1 mmol) was prepared as described above. After 30 min at -78 °C, the cooling bath was removed, and after 12 h at room temperature, the reaction mixture was worked up as described for the synthesis of 3 above. The crude product was purified by column chromatography (SiO₂, hexane/AcOEt 8:2) to afford a yellow solid (75%), mp 128–130 °C. Selected spectral data for compound 4: ¹H NMR (CDCl₃, 300 MHz) δ 5.10 (br s, 1H), 7.12 (s, 1H), 7.23 (m, 1 H), 7.29 (m, 2H), 7.32 (m, 2H), 7.88 (br s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 126.1, 127.6, 128.1, 128.1, 129.4, 129.4, 138.1, 140.6, 142.9; MS [EI+] m/z (RI%): 160 [M]⁺ (30), 143 [M]⁺ (50), 77 [C₆H₃]⁺ (100); IR (film, cm⁻¹) 3321, 1650.
- Chen, X.; Schneller, S. W. J. Med. Chem. 1993, 36, 3727; See also (a) Yates, P.; Mayfield, R. J. Can. J. Chem. 1977, 55, 145; (b) Crain, P. F.; McCloskey, J. A.; Lewis, A. F.; Schram, K. H.; Townsend, L. B. J. Heterocycl. Chem. 1973, 10, 843; (c) Bertho, A.; Nussel, H. Liebigs Ann. Chem. 1927, 457, 278.